The Photochemistry of (Diene)(hydro)[tris(3,5dimethylpyrazolyl)borato]rhodium Complexes

Preliminary Communication

by Arlen Ferrari, Massimo Merlin, and Silvana Sostero*

Dipartimento di Chimica, Centro di Studi su Fotoreattività e Catalisi, CNR, Università di Ferrara, via Borsari 46, I-44100 Ferrara

and Heinz Rüegger and Luigi M. Venanzi

Laboratorium für Anorganische Chemie, ETHZ, Universitätstrasse 6, CH-8092 Zürich

The photochemical rearrangement of $[Rh(\eta^{4}-1,5-cod)Tp^{Me2}](Tp^{Me2}=hydrotris(3,5-dimethylpyrazolyl)$ $borato, 1,5-cod = cycloocta-1,5-diene) to the new compound <math>[Rh(\eta^{4}-1,3-cod)Tp^{Me2}]$ (2) is described. The characterization of 2 was carried out using ¹H-, ¹³C-, and ¹⁰³Rh-HMQC-NMR spectroscopy. Photolysis of 2 is a versatile entry point into the organometallic chemistry of the {RhTp^{Me2}} fragment as it can be used to produce *a*) hydrido-carbonyl ([Rh(CO)H₂Tp^{Me2}]), *b*) hydrido-phenyl-phosphite ([RhH(Ph)(P(OMe)₃)Tp^{Me2}]), and *c*) ethoxide-hydrido-phosphite ([RhH(OEt)(P(OMe)₃)Tp^{Me2}]) complexes.

Extensive photochemical studies have been carried out on alkene-transition-metal complexes [1-5]. These studies show that coordinated alkenes undergo a variety of photochemical reactions ranging from ligand substitution to isomerization and skeletal rearrangements. However, usually alkene complexes containing phosphines, π -cyclopentadienyls, and carbonyls as ancillary ligands have been investigated [1].

As there are structural and electronic relationships between complexes containing the η^{5} -cyclopentadienyl anion (Cp) and those containing the hydrotris(pyrazolyl)borato anion [6], more recently the photochemical reactivity of complexes of the latter anion in general, and those of the type $[M(L)_2Tp^{Me2}]$ (Tp^{Me2} =hydrotris(3,5dimethylpyrazolyl)borato, M=Rh and Ir, L=CO in particular), have also been investigated [7–11]. Furthermore, it was recently shown that $[IrH_2(\eta^2-coe)Tp^{Me2}]$ (coe = cyclooctene) [4] and $[Ir(\eta^4-1,5-cod)Tp^{Me2}]$ (1,5-cod = cycloocta-1,5-diene) [5] photochemically activate C–H bonds as found for some π -cyclopentadienyl complexes of iridium [12][13].

Electronic considerations and previous photochemical observations [4][5] have now led to the photochemical study of $[Rh(\eta^{4}-1,5-cod)Tp^{Me2}]$ (1) and the discovery of two new photoreactions. The first of them, occurring at 1, is shown in *Eqn.* 1.

$$\begin{bmatrix} \operatorname{Rh}(\eta^{4}\text{-}1,5\text{-cod})\operatorname{Tp}^{\operatorname{Me2}} \end{bmatrix} \xrightarrow{h\nu} \begin{bmatrix} \operatorname{Rh}(\eta^{4}\text{-}1,3\text{-cod})\operatorname{Tp}^{\operatorname{Me2}} \end{bmatrix}$$
(1)
1 2

This reaction constitutes a high-yield photoisomerization of the alkene formally involving an intramolecular 1,3-H shift within the coordinated 1,5-cod, resulting in the

formation of coordinated 1,3-cod. Experimental evidence for this transformation is provided by ¹H-, ¹³C-, ¹³C,¹H-HMQC- and ¹⁰³Rh,¹H-HMQC-NMR spectroscopic studies. The new complex **2** is a very stable compound and a rare example of 1,3-cod bonded to a metal center [14-16].

The other type of photoreaction involves complex **2**. This, in the presence of $P(OMe)_3$ in benzene, gives $[RhH(Ph)(P(OMe)_3)Tp^{Me2}]$ (**3**) (*Eqn.* 2)

This reaction must occur in several stages. The first of them, most probably, is the photodissociation of 1,3-cod from **2** with formation of the coordinatively unsaturated fragment {RhTp^{Me2}}. The presence of 1 equiv. of free 1,3-cod in the distillate at the end of the reaction supports this hypothesis. This step is likely to be followed by the oxidative addition of a C–H bond of C_6H_6 to the above fragment with formation of {RhH(Ph)Tp^{Me2}}, another coordinatively unsaturated species. Lastly, the latter is expected to react with P(OMe)₃, forming [RhH(Ph)(P(OMe)₃)Tp^{Me2}] (**3**).

Several related reactions have been carried out. Thus, irradiation of **2** in MeOH produces the carbonyl complex $[Rh(CO)H_2Tp^{Me2}]$ (4) (*Eqn. 3*).

$$\begin{bmatrix} \operatorname{Rh}(\eta^{4}\text{-}1,3\text{-}\operatorname{cod})\operatorname{Tp}^{\operatorname{Me2}} \end{bmatrix} \xrightarrow[\operatorname{MeOH}]{h\nu} \begin{bmatrix} \operatorname{Rh}(\operatorname{CO})\operatorname{H}_{2}\operatorname{Tp}^{\operatorname{Me2}} \end{bmatrix} + 2\operatorname{H}_{2} + 1,3\text{-}\operatorname{cod}$$
(3)
2
4

As the likely primary photoevent is the dissociation of 1,3-cod from **2**, the resulting transient {RhTp^{Me2}} should cause the dehydrogenation of MeOH with formation of the carbonyl complex **4**. This reaction is analogous to that found for [Ir(η^{4} -1,5-cod)Tp^{Me2}] [5].

The photoreaction of $[Rh(\eta^{4}-1,3-cod)Tp^{Me2}]$ (2) in Et₂O, in the presence of P(OMe)₃, gives the new Rh^{III} complex $[Rh(EtO)H(P(OMe)_{3})Tp^{Me2}]$ (5) (*Eqn. 4*). The formulation

$$[Rh(\eta^{4}-1,3-cod)Tp^{Me^{2}}] + P(OMe_{3}) \xrightarrow{h\nu/1h}_{Et_{2}O}$$

$$2 \qquad [Rh(EtO)H(P(OMe)_{3})Tp^{Me^{2}}] + 1,3-cod + C_{2}H_{4}(?) \qquad (4)$$
5

of **5** is based on spectroscopic data and chemical reactivity. We propose the following sequence of reactions for the formation of **5**: *i*) initial photodissociation of 1,3-cod giving the primary photoproduct { $RhTp^{Me2}$ }; *ii*) efficient interception of the transient 14-e⁻ species { $RhTp^{Me2}$ } by P(OMe)₃ with formation of the intermediate { $Rh(P(OMe)_3)Tp^{Me2}$ }; *iii*) photoinduced oxidative addition of Et₂O by this intermediate, with formation of the transient { $Rh(Et)(OEt)(P(OMe)_3)Tp^{Me2}$ }; *iv*) loss of C₂H₄ from the latter and formation of product **5**.

The hydrido-ethoxy derivative 5 is quite reactive; in benzene solution, it thermally decomposes to give 3 as the final product (*Eqn.* 5), presumably through

the reductive elimination and extrusion of EtOH, followed by the oxidative addition of C_6H_6 .

$$[Rh(OEt)H(P(OMe)_3)Tp^{Me2}] + C_6H_6 \xrightarrow{d} [RhH(Ph)(P(OMe)_3)Tp^{Me2}] + EtOH (5)$$
2
3

However, in addition to the oxidative addition reaction shown in *Eqn. 4*, after several hours of selective photolysis of complex **2**, a photostationary state is established between **5** and the new hydrido complex $[RhH_2(P(OMe)_3Tp^{Me2}]$ (**6**) in a ratio of *ca.* 3:1.

The formation of **6** may be due to a secondary photochemistry of **5**, consistent with a reductive elimination of EtOH and its subsequent dehydrogenation to form the dihydrido complex **6** in analogy to the photochemical dehydrogenation of MeOH by $[Ir(\eta^{4}-1,5-cod)Tp^{Me2}]$ [5].

In summary, complex **1** shows a most interesting and varied photochemical behavior, which is being further investigated.

The authors thank Prof. O. Traverso for helpful discussion. Financial support from the MURST is gratefully acknowledged.

Experimental Part

General. The photochemical experiments were carried out as described in [5]. The products were characterized by FT-IR and NMR spectroscopy, and elemental analysis. The NMR spectra were recorded in C_6D_6 soln. on a *Bruker AC 200* instrument and, in part, on a *Bruker AMX 500*, operating for ¹H at 200.13 (500.13), for ¹³C at 50.3 (125.6), and for ³¹P at 81.0 (202.4) MHz. The chemical shift scales are relative to internal TMS for ¹H, ¹³C, and CH₃NO₂ of ¹⁵N, and to external H₃PO₄ for ³¹P; the ¹⁰³Rh shifts are on the absolute scale $\Xi = 3.16$ MHz, whereas TMS resonates at exactly 100 MHz.

 $[Rh(\eta^{4}-1,3-cod)Tp^{Mc2}]$ (2). FT-IR (KBr): 2522 (B–H). ¹H-NMR (200 MHz, C₆D₆, 295 K): 5.62 (*s*, 3 H, H–C(4)); 5.12 (*m*, 2 CH); 4.20 (*m*, 2 CH); 2.27 (*s*, 9 H, Me–C(5)); 2.20 (*s*, 9 H, Me–C(3)); 1.73–1.37 (*m*, 4 CH₂). ¹³C-NMR (C₆D₆, 295 K): 151.2 (3 C, C(3)); 142.7 (3 C, C(5)); 107.7 (3 C, C(4)); 82.5 (*d*, J(Rh,C) = 6.1, 2 CH); 39.5 (*d*, J(Rh,C) = 18.3, 2 CH); 28.0, 25.5 (4 CH₂); 14.7 (3 C, Me–C(3)); 13.0 (3 C, Me–C(5)). ¹⁰³Rh,¹H HMQC NMR (C₆D₆, 295 K): 1942. Anal. calc. for C₂₃H₃₄BN₆Rh: C 54.35, H 6.74, N 16.53; found: C 54.45, H 6.69, N 16.62.

[*RhH*(*Ph*)(*P*(*OMe*)₃)*Tp*^{*Mc2*]} (**3**). FT-IR (KBr): 2520 (B–H), 2100 (Rh–H). ¹H-NMR (200 MHz, C₆D₆, 295 K; primed atoms are those in *trans*-positions to P(OMe)₃, double primed atoms are those in *trans*-positions to the Ph group): 7.95 (H_o); 7.12 (H_m); 7.09 (H_o'); 6.99 (H_p); 6.85 (H_m); 5.89 (*s*, H–C(4)); 5.65 (*s*, H–C(4'')); 5.49 (*J*(P,H) = 1.8, H–C(4')); 3.14 (*d*, *J*(P,H) = 11.4, (P(OMe)₃)); 2.38 (Me–C(3)); 2.32 (Me–C(3'')); 2.27 (Me–C(5'')); 2.25 (Me–C(5)); 2.15 (*s*, Me–C(5')); 1.77 (Me–C(3')); -14.89 (*dd*, *J*(Rh,H) = 23.16, *J*(P,H) = 20.16, RhH). ¹³C-NMR (C₆D₆, 295 K): 151.8, 151.0, 150.9 (3 × 1 C, C(5)); 145.6 (C_o of Ph); 143.9, 143.6, 142.9 (3 × 1 C, C(5)); 140.3 (C_o of Ph); 126.2 (C_m of Ph); 125.4 (C_m of Ph); 121.8 (C_p of Ph); 107.2 (C(4)); 106.4 (C(4')); 51.4 (*d*, *J*(P,C) = 5.3, P(OMe)₃); 15.1 (*Me*–C(3'')); 15.1 (*Me*–C(3'')); 12.9 (*Me*–C(5'')); 12.8 (Me–C(5'')). ³¹P[¹H]-NMR (C₆D₆, 295 K): 137.6 (*d*, *J*(P,R) = 235; *d* with off-resonance decoupling). ^{10°}Rh, ¹H-HMQC-NMR (C₆D₆, 295 K): 127.0, ¹⁵N, ¹H-HMQC-NMR (C₆D₆, 295 K): 127.5 (*J*(P,N) = 2, *J*(Rh,N) = 10). Anal. calc. for C₂₄H₃₇BN₆O₃PRh: C 47.86, H 6.19, N 13.95, found: C 47.91, H 6.08, N 14.05.

 $[RhH_2(CO)Tp^{Me2}]$ (4). FT-IR (KBr): 2518s, (B–H) 2035s, (Rh–H) 2010 (br., CO). ¹H-NMR (200 MHz, C₆D₆, 295 K; primed atoms are those in *trans*-positions to the CO ligand): 5.57 (s, 2 H, H–C(4)); 5.46 (s, H–C(4')); 2.23 (s, Me–C(3')); 2.21 (s, 6 Me–C(3)); 2.18 (s, Me–C(5')); 2.07 (s, 6 H, Me–C(5)); -12.93 (d, J(Rh,H) = 18.8, RhH). ¹³C-NMR (C₆D₆, 295 K): 169.7 (d, J(Rh,C) = 31.74, CO); 150.3 (1 C, C(3')); 143.7 (2 C, C(5)); 105.7 (s, 2 C, C(4)); 105.6 (1 C, C(4')); 16.6 (Me–C(3')); 15.0 (1 C, C(3')); 14.0 (1 C, C(5')); 143.7 (2 C, C(5)); 105.7 (s, 2 C, C(4)); 105.6 (1 C, C(4')); 16.6 (Me–C(3')); 15.0 (1 C, C(3')); 15.

1456

(2 C, Me-C(3)); 12.5 (Me-C(5')); 12.3 (2 C, Me-C(5)). Anal. calc. for $C_{16}H_{24}BN_6ORh$: C 44.68, H 5.62, N 19.55; found: C 44.74, H 5.60, N 19.54.

 $[Rh(EtO)H(P(OMe)_3)Tp^{Me2}] (5). \ ^{1}\text{H-NMR} (200 \text{ MHz}, C_6D_6, 295 \text{ K}): 5.81, 5.63, 5.59 (3s, 3 \text{ H}, H-C(4)); 3.46 (qd, J(H,H) = 7.08, J(Rh,H) = 1.4, 2 \text{ H}, CH_2 \text{ of EtO}); 3.14 (d, J(P,H) = 11.7, 3 \text{ Me}); 2.59, 2.57, 2.30, 2.24, 2.21, 2.14 (6s, 18 \text{ H}, Me-C(3), Me-C(5)); 1.10 (t, J(H,H) = 7.1, 3 \text{ H}, Me \text{ of EtO}); -16.30 (dd, J(P,H) = 21.8, J(Rh,H) = 23.7, RhH). \ ^{3}\text{P}[^{1}\text{H}]-\text{NMR} (C_6D_6, 295 \text{ K}): 143.7 (d, J(P,Rh) = 235; dd \text{ with off-resonance decoupling}). The \ ^{13}\text{C-NMR}$ spectrum of **5** has been frustrated due to a facile conversion in C_6D_6 to the species [RhD(C_6D_5)(P(OMe)_3)Tp^{Me2}] ((D_6)-3).

 $[RhH_2(P(OMe)_3)Tp^{Me2}]$ (6). ¹H-NMR (200 MHz, C₆D₆, 295 K): -15.97 (*dd*, J(Rh,H) = 26.2, J(P,H) = 19.6, RhH). ³¹P{¹H}-NMR (C₆D₆, 295 K): 153.2 (*d*, J(P,Rh) = 228.0); *dt* with off-resonance decoupling.

REFERENCES

- [1] C. Elschenbroich, A. Salzer, 'Organometallics', VCH, Weinheim, 1992, and references therein.
- [2] W. E. Geiger, Acc. Chem. Res. 1995, 28, 351.
- [3] G. Geoffroy, M. S. Wrighton, 'Organometallic Photochemistry', Academic Press, New York, 1979.
- [4] A. Ferrari, E. Polo, H. Ruegger, S. Sostero, L. M. Venanzi, Inorg. Chem. 1996, 35, 1602.
- [5] A. Ferrari, M. Merlin, S. Sostero, O. Traverso, H. Ruegger, L. M. Venanzi, Helv. Chim. Acta 1998, 81, 2127.
- [6] S. Trofimenko, Chem. Rev. 1993, 93, 943.
- [7] a) A. A. Purwoko, J. A. Lees, *Inorg. Chem.* 1996, 35, 675; b) A. A. Purwoko, S. D. Tibensky, J. A. Lees, *ibid.* 1996, 35, 7049.
- [8] S. E. Bromberg, H. Yang, M. C. Asplund, T. Lian, B. K. McNamara, K. T. Kotz, J. S. Yeston, M. Wilkens, H. Frei, R. Bergman, C. B. Harris, *Science* 1997, 28, 260.
- [9] Y. Alvado, O. Bountry, E. Gutierrez, A. Monge, M. C. Nicasio, M. L. Poveda, P. J. Perez, C. Ruiz, C. Bianchini, E. Carmona, *Chem. Eur. J.* 1997, 3, 860.
- [10] M. Paneque, M. L. Poveda, V. Salazar, S. Taboada, E. Carmona, Organometallics 1998, 18, 139.
- [11] E. Gutierrez, A. Monge, M. Paneque, M. L. Poveda, S. Taboada, M. Trujilio, E. Carmona, J. Am. Chem. Soc. 1999, 121, 346.
- [12] a) A. Janovicz, R. G. Bergman, J. Am. Chem. Soc. 1982, 104, 352; b) ibid. 1983, 105, 3929.
- [13] a) J. K. Hoyano, W. A. G. Graham, J. Am. Chem. Soc. 1982, 104, 3723; b) J. K. Hoyano, A. D. McMaster, W. A. G. Graham, *ibid*. 1983, 105, 7190.
- [14] J. Baghdati, N. A. Bailey, S. Dowding, C. White, J. Chem. Soc., Chem. Commun. 1992, 170.
- [15] J. Moraczewski, W. E. Geiger, J. Am. Chem. Soc. 1981, 103, 4779.
- [16] H. J. Shaw, W. E. Geiger, J. Hyde, C. White, Organometallics 1998, 17, 5486.

Received July 5, 1999